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Abstract— Pedestrian detection in the driving video is an 

important function for accident avoidance. Different from the 

detection method based on human shape analysis, this paper 

introduces a new method to detect walking people from their 

motion in the driving video. Motion profiles of the driving video 

are acquired where we found walking people showing their leg 

moving trajectories as twisted chains. These chains are very 

different from the moving traces of background and other 

vehicles appearing as smooth curves according to the vehicle 

motion mechanism. Thus we design a method to recognize 

chains uniquely at leg crossing by using HOG features and 

confirmed with template matching. This method can detect a 

person in two walking steps.  The results show a promising 

detection rate in the reduced data dimension of video.  

I. INTRODUCTION 

Pedestrian detection has been an intensively researched 

topic [1, 2]. Most of them are the appearance based approach 

that classifies the human shapes in video based on a set of 

trained features learned from a large number of samples with 

variations [3, 4]. It is more difficult for a vehicle borne 

moving camera to detect human because of the dynamic 

moving background and changeable environment. Pedestrian 

detection has been studied mainly on detecting the human 

shapes in individual frames at various resolutions and poses 

[5, 6]. It has achieved a success while still has a problem of 

high false positive rate when targets are mixed with complex 

background. Features such as HOG [7], Haar-like feature 

[8], LBP [9] are used to describe the characteristics of 

humans in detection windows. Various classifiers have been 

tested on comprehensive data set to achieve a balanced 

accuracy and processing time [10, 11].  

Few efforts have been focused on the dynamic motion 

information in the video for human detection [12]. Gait 

recognition research works [13] have been investigating 

walking characteristics of different people in surveillance 

videos from static cameras for person identification and 

visualization [14]. The classification mainly uses frequency 

analysis on the entire sequence. Compared with such static 

cameras, our work is more challenging because the video is 

from a vehicle borne camera. Our goal is to detect walking 

people promptly. 

This work tackles the pedestrian detection problem from a 

new angle. We found that human motion is more random 

and non-smooth as compared to the background motion 
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generated from the vehicle ego-motion, regardless the 

complexity of intensity distribution on human appearances 

in background. This finding allows us to propose a unique 

method to detect walking pedestrians from their step patterns 

in a motion profile. By profiling motions from driving video 

into a temporal image [15], we found that pedestrians’ 

walking action forms chain-type trajectories different from 

smooth trajectories of other scenes. We therefore developed 

an original walking step detector to extract the leg moving 

patterns at their step crossings. The detector applied leg-

crossing filtering successfully based on local template 

matching and HOG features, which yields a high detection 

rate in the motion profile. The algorithm also works 

efficiently in a reduced data dimension from video and is 

suitable to be implemented in real time during the vehicle 

maneuver in the future. The proposed method can at least 

improve the accuracy of pedestrian detection if it is 

combined with the appearance based method. In a good 

expectation, it can directly search for walking pedestrians, if 

his/her walks more than one step.  

In the following, we start from the image geometry of a 

vehicle borne camera in Section II, in order to obtain motion 

profiles at several heights/depths. Then, in Section III, the 

trajectories between walking pedestrian and background are 

compared and general leg motions are analyzed in order to 

model their characteristics. Section IV introduces the 

methods to detect the leg-crossings and its variations for 

locating walking trajectories in the motion profile. Section V 

discusses the experiments and accuracy, as well as efficiency 

improvement.  

II. COLLECTING MOTION PROFILES FROM DRIVING VIDEO  

As shown in Fig. 1, the video frame from a vehicle borne 

camera is mounted at the height of in-car back mirror, which 
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                      Video frame 

  
Fig. 1 Video frame and collected motion profiles showing walking 

trajectories. Two zones in red are selected in the frame above for 

condensing image intensities into two motion profiles below. The time 

axis is upward in the profiles and the horizontal axes are the x axes 

same as in the video frame. 
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has a position higher than legs of pedestrians in the 3D 

space. The projection of the horizon is located in the video 

frame once the camera is fixed. According to perspective 

projection rule, the projections of human legs are thus lower 

than the horizon in the video frame appearing at different 

heights depending on leg distances/depths. We therefore 

divide the video frame below the horizon projection into two 

horizontal zones (shown in Fig. 1) for color value 

condensing [16]. The heights of zones are determined 

according to the leg heights in the frames, which are further 

related to their depths. A distant pedestrian may have legs 

included in upper zone, but a close pedestrian may only have 

upper body covered by upper zone; their legs are then 

captured by the lower zone.  

In each zone, pixel values are averaged vertically to 

produce an array in each frame. The arrays from consecutive 

frames are connected along the time axis to form a 

condensed image I(x,t) referred to as motion profile, which 

reflects the spatial and temporal information together in a 

single image. More detailed process can be found in a recent 

paper [15]. Through the vertical condensing, many small and 

non-vertical visual features are blurred out in the motion 

profile. These features include slanted lane marks in the 

video frames and other horizontal shapes such as road signs 

on the ground. Only vertical features such as human bodies 

and legs, poles, vertical rims of architectures, and side edges 

of surrounding vehicles are left in the motion profile as 

motion traces along the time axis (Fig. 2). Even if the 

observing vehicle has some shaking due to uneven road 

surface, the instant vertical vibration does not affect the 

motion traces significantly; it may change the color/intensity 

and thus contrast in the motion profile in a limited extent 

(observable in Fig. 2).  

In the motion profile I(x,t), we can observe many 

phenomena including background traces reflected from 

vehicle ego-motion, as well as the traces of other vehicles, 

pedestrians, and bicyclists. Many dominant features show 

their motion in smooth trajectories. If the observing vehicle 

has a turn in one direction, all the visual features will move 

in the opposite direction in the video and their traces extend 

to that direction in the motion profile as well (lower part in 

Fig. 3a). As the vehicle moves forward, background features 

expand from the vehicle heading direction in the video 

frames so that their traces in the motion profile diverge 

toward sides along the time axis (Fig. 3). For the lower zone 

to condense the color, it also has an effect to scan the road 

surface, which means it covers a large scope of the road 

surface ahead (Fig. 3d). Sometime, it is occupied by a close 

vehicle in front. The back side of front vehicle may only 

appear in a certain period and then merge into road surface, 

which generates blurred shapes dragged along the time axis. 

The traces walking people appear as chains formed from 

alternative leg motion in the motion profile. If the camera is 

set at a relatively lower position and viewing angle is close 

to horizontal, we can observe the leg motion for a longer 

time period with fewer zones located in the video frame. The 
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Fig. 2 A frame (top) from an urban driving video and the motion 

profile (bottom) vertically condensed from continuous video frames 

in the red zone (top). The motion profile shows the right turning 

action of a front vehicle (white) with turning light blinking. Passing 

vehicles on right are in large curved traces, and pedestrians walking 

trajectories reveal as chains. The time of each event is recorded 

accurately in the motion profile along the upward time axis. 

 (a) 

 (b) 

 (c)

 (d) 

Fig. 3 Various trajectories from walking pedestrians and objects in the 

motion profiles. The time axis is upward in vertical direction. 
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goal of this work is then identifying walking traces in the 

motion profile of video for pedestrian detection and their 

location understanding during vehicle driving.  

III. MOTION TRAJECTORIES OF WALKING PEOPLE 

A. Trajectories difference between pedestrians and vehicles 

Because a four-wheeled vehicle moves along a smooth path 

on a flat road, all the scenes relative to the vehicle motion 

are also smooth when they are projected to the video. Other 

vehicles appearing in the field of view also have smooth 

motion, and thus their trajectories in the video are smooth as 

well. Therefore, we can conclude generally that the 

trajectories of static scenes and other vehicles are smooth in 

the motion profile over a long period. This can be observed 

in the motion profile where local trajectories are highly 

parallel. Only pedestrian motion produces trajectories that 

are twisted with varied widths, and walking steps from legs 

form chain-type traces. This has been confirmed by 

examining motion profiles in a large driving video database. 

One example is displayed in Fig. 2. Hence, we set our goal 

to detect such non-smooth chain trajectories to alarm the 

existence of walking people in front of vehicle. For human 

observers, it has no difficulty to distinguish such trajectories 

from the smooth background traces. Our goal is develop an 

algorithm to automatically detect parts of such trajectories.  

B. Chain modeling from pedestrian motion 

In the motion profile, the most prominent character of the 

walking chain different from other smooth trajectories are 

(1) leg crossings with different orientations and (2) chain 

rings with varied step sizes. We design a filter to detect the 

leg-crossings from their unique structures. We first apply 

general template matching to find strong trajectories, and 

then apply HOG operators to detect them in the motion 

profile. The system will be able to detect a human if he/she 

walks two steps that producing two leg-crossings, which is 

different from one crossing of other depth varied scenes such 

as a pole on roadside against distant background. 

Let us model the leg-crossing movement in the motion 

profile as shown in Fig. 4. Each walking step contains two 

leg’s alternative actions: one has a mild movement and the 

other steps out largely. Their traces appear as close to 

vertical and horizontal in the motion profile respectively. 

These two traces may not have the same color because of the 

shadow and illumination on legs, but they all have clear 

contrast from background. A typical template of leg-crossing 

is synthesized in Fig. 4 according to real samples. The 

variations of the template are in (a) the vertical scaling along 

the time axis due to walking and vehicle speeds (video rate 

fixed), (b) horizontal scaling due to the step size and depth 

of pedestrians. During the vehicle turning in a certain 

direction, the scenes are shifted towards the opposite 

direction in the video such that the template needs to be 

skewed horizontally in the motion profile. Therefore, we 

design another template to cover the inversely skewed case 

where the trace of standing leg moves in the opposite 

direction to the vehicle turning direction. Figure 5 shows 

such four detectors (templates) describe the typical walking 

patterns in one direction corresponding to fast, normal, slow 

walking speeds, and back skewed traces during vehicle 

turning. Accordingly, the chain direction (connecting two 

leg-crossings) can also be specified as 20, 40, 60, and 80 

degrees briefly from the x axis in the motion profile.  

The structure of leg-crossing pattern is scale invariant 

locally in the motion profile, since the four segments around 

the crossing point can extend longer in a little larger 

template window. To locate such leg-crossings, the HOG 

(histogram of oriented gradient) are computed to generate a 

sequence of features. The HOG parameters for four 

templates are divided as in Table I. The block sizes are all in 

22 cells, and cell sizes are 45 pixels. Overlaps between 

blocks are 50% and 9 bins are prepared in orientations. 

Table I HOG Computation Parameters for Templates 
Template Number of blocks 

Fast    739 

Normal    929 

Slow     919 

Skewed                          99 

Considering the symmetric case of walking directions, the 

four templates are further flipped in the x direction to create 

four more templates. With these eight templates, we can 

detect major leg-crossing spots with different orientations in 

the motion profile. Figure 6 shows one example of leg-

crossing in both direction walking chains. Some leg-crossing 

spots may be detected by multiple templates. The motion 

profile is scanned incrementally along the time axis to locate 

the leg-crossing moments.  

 
Fig. 4 Typical walking along street and across street are depicted by 

their trajectories in the motion profile. Two legs stepping alternatively 

with one closer leg (in orange) occluding the other behind temporally. 

Red boxes show their scale-invariant local behavior at leg-crossings.  

(a)  

                                  (b) 

                                                                     (c)    

                                                                              (d) 
Fig. 5 Leg-crossing detectors in the motion profile for the leftward 

walking chains and their orientation distributions. (a) Fast and close 

motion temlate has (HW) 1680 pixels, (b) Typical crossing with 

trace pattern, 2050 pixels, (c) Slow motion template, 2040 pixels, 

and (d) Back-skewed template, 2020 pixels.  
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IV. CHAIN DETECTION AT LEG-CROSSINGS 

A. Intensity template matching for prescreening 

Because HOG detects the intensity distribution similar to the 

template of a structure, it may pick up places with very week 

gradients as well. Therefore, as a precondition, we further 

require that the detected chain must have a strong gradient 

strength consistent to the template. We use the template 

matching to locate the places with high similarity to the 

chains. Normalized cross correlation on intensity is applied 

to the entire motion profile as 
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where T is template and I is motion profile. The points with 

the absolute values higher than a threshold are marked, 

which solves the dark leg traces against bright background, 

and vice versa.  The survived positions are further input into 

the HOG operator for shape comparison to remove the false 

positives. Thus, only the positions with similar gradients 

between the template and motion profile are passed to HOG. 

This pre-screening also largely reduces the computation time 

for HOG in the entire motion profile.  

B. Leg-crossing detection by HOG features 

The HOG features between the template and image spot 

are compared with their feature distance. A threshold is used 

to reject the places different from the template. Figure 7 

shows the cross-correlation template matching and then the 

HOG matching result. The prepared eight templates with 

various orientations are applied to the motion profile 

individually and their results are combined with Union 

operation so that false negative rate is reduced.  

For a walking chain, at least two leg-crossing spots exist 

to form a ring. Otherwise, a crossing pattern may also appear 

at the crossing spot between two traces of static objects. For 

example, if two narrow objects such as electric poles are at 

different depths, their motion parallaxes are much different 

and the traces have different directions in the motion profile. 

They may be occasionally captured at a crossing spot with 

one trace over another. However, this type of crossing will 

never lead any merge again on their traces like a ring on a 

walking chain. We thus require two leg-crossing spots with 

one step per leg for confirming the walking action of 

pedestrian. To examine two leg-crossings that form a ring, 

the direction of the template is defined as one of 20, 40, 60, 

and 80 degrees for searching. If we can find another 

consecutive one along that direction from the first leg-

crossing, a ring is confirmed and the human position is 

identified from the x coordinate in the motion profile.  

V. EXPERIMENTS AND DISCUSSION  

We have set a camera on a vehicle and captured long time 

driving videos. The motion profile is generated at the rate of 

60Hz after the horizon is located in the video frame. Current 

experiments use two zones for vertical intensity condensing 

that yields two motion profiles calculated in color. For a leg 

position or height in the frame imperfectly covered by one 

zone, it may still generate leg chains with a lower contrast. 

Even if pedestrian legs are missing in one zone, the second 

zone should catch the leg movement during walking periods.  

The intensity template matching is applied with eight 

templates for both chain directions and the results are sent to 

HOG classifiers with the same templates for identification. 

The first threshold for template matching is set loosely so as 

to tolerate more candidates, but they do not appear at place 

with homogeneous intensity distribution or week contrast. 

       (a) Motion profile 

  
(b) Template matching result       (c) Further applied with HOG. 

 
Fig. 7  Prescreening with template matching before HOG computation 

and HOG confirmation. The black boxes show the template size in the 

motion profile.  

 
Fig. 6 HOG-only templates detecting chains at leg-crossings in a 

motion profile. Colors show which template detects the points. Cyan, 

blue, green, and red indicate the template in 20, 40, 60, or 80 degree 

orientation detects the leg-crossing, respectively. While HOG locates 

leg-crossing precisely at various walking speed, it may pick up 

individual points at some smooth background as well. 

 x 
 Fig. 8 Successful back chain detection in the motion profile from the 

lower zone near a street crossing. Cyan and blue are 20 and 40 degree 

templates respectively. The lower center part is the leaving trace of a 

front vehicle in red color and white part is from the number plate. After 

waiting a pedestrian crossed street, the observer vehicle speeded up. 
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This constrains leg-crossings to be at strong edge places. 

The detected places are sent to HOG classification module 

that has a stronger shape and structure discriminating power 

than the template matching. By applying these steps one 

after another, we obtain the leg-crossing spots in the motion 

profile stably. Each spot with several connected pixels is 

counted as one leg-crossing, even if only one point is 

detected. Figure 8 shows a detected chain in the examples.  

We have tested 99 motion profiles/clips with pedestrians. 

We select 87 smaller image patches from them containing 

clear walking chains. Totally, there are 524 rings (leg-

crossings as well) on the chains identified by humans in this 

set. Others are standing or invisible people due to dark 

illumination and background. By tuning the thresholds, the 

algorithms can detect 447 leg-crossings on the trajectories 

and missing 77 leg-crossings as false negatives. Also, 35 

false positives are reported at non-chain spots. The precision 

and sensitivity are calculated as 92% and 85% respectively. 

F1 measure is thus 88%. For the entire motion profile larger 

than these patches, true negative rate may increase 

significantly but false positives increase at a small rate so 

that accuracy will become better. The same argument can be 

derived if we test more and longer videos without 

pedestrians. Several reasons for obtaining false negative are 

(1) a crowd of pedestrians where leg traces are mixed such 

that leg-crossings are interfered by other leg-traces. (2) The 

leg traces have strong color variation between sun led side 

and shadow side, which causes a relief-like trace (Fig. 2). 

Such trace crossing behavior has not been well embedded 

into our leg-crossing template. A trace tracking mechanism 

becomes necessary in such a case, since a human observer 

has no doubt to locate such pedestrian traces.  

Figure 9 shows more samples of leftward chain 

detection. Some points are detected by multi-templates. In 

the motion profile, background traces are smooth curves 

during vehicle moving and turning at low speeds. Some 

horizontal lines in the motion profile are from the motion of 

windshield wiper in raining days. They have no influences 

on our detection algorithms in the result. Figure 10 shows 

similar results on rightward walking trajectories.  

   

  

  

 

  

  

 

 

 

  

  

  

  
    Template,         Then HOG.           Template,             Then HOG 

Fig. 9 Samples of leg-crossing detection in leftward walking traces. 

Gradient matching and then HOG matching results are paired.  

 

 

  

  

 

  

  
Template,     Then HOG  

Fig. 10 The template and HOG detection of leg-crossing spots in 

rightward walking traces. Spots with a single detected point look dark. 
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Our proposed method cannot detect people standing still 

aside streets because they have smooth traces as static 

objects. On the other hand, static behavior at road side has 

no danger for driving. Most people near driving areas are 

walking or not absolutely still. Some small body movement 

may produce traces with different widths, which can be 

called non-smooth traces here. Although our current 

algorithms based on leg motion have not detected 

pedestrians walking behind a guiderail or people wearing 

skirts, those traces are non-smooth curves in the motion 

profile as well. Further, if the vehicle speed is fast as on a 

highway, the motion profile is shortened in temporal 

dimension. A pedestrian walking chain will be squeezed and 

deformed in the motion profile. This makes the rings 

invisible or the chain degrade to a non-smooth trace. Most of 

our testing videos have a low vehicle speed (<40mph) at 

street junctions and narrow streets where pedestrians appear 

frequently. Even if the vehicle makes a turn, leg-crossings 

are detectable by the 80-degree skewed template.  

Because we extract the motion profiles from a video clip, 

the data reduction rate is two lines out of a frame (60Hz 

sampling), i.e., each frame only has two lines to process for 

one motion profile. Therefore, this approach tremendously 

reduces the data size as compared to the appearance based 

method performed over every frame. In addition, the 

template matching eliminates many spots for HOG matching 

so that the processing time is further reduced significantly. 

This demonstrates that this motion based method has a lower 

complexity in computation and it may be suitable for real 

time processing on-board a vehicle. The method can even be 

combined with appearance based algorithms in the future. 

In our experiments, humans can carefully identify 

pedestrian walking chain in the motion profile in almost 

100% accuracy. This is done by tracking leg traces and 

examining their twisted forms. Our currently designed 

algorithm focuses on trace crossing for the simplicity and 

efficiency. This local filtering and classification method 

avoids tracking and structure analysis of various leg traces.  

VI. CONCLUSION 

By employing the motion profile for driving video, we found 

that the walking patterns of pedestrian legs as chains are 

distinguishable from the motion of other scenes in a robust 

degree. This work thus has a unique focus on identifying 

pedestrians directly from leg-crossings of walking chains in 

the motion profile condensed from driving video. We have 

analyzed the chain type of walking trajectories and designed 

filter templates to locate leg-crossing patterns in the scene 

trajectories. This method can extract a pedestrian as long as 

two steps are detected in the video. The experimental results 

show a high accuracy in the pedestrian detection as well as 

the efficiency in using the motion profile.  
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Fig.11 Pedestrian is located in video frames according to the positions 

of the detected trace in the motion profile condensed lower zone. 
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